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ABSTRACT: 

 

Solar energy is a renewable energy source directly from sunlight and its production depends on roof characteristics such as roof type 

and size. In solar potential analysis, the main purpose is to determine the suitable roofs for the placement of solar panels. Hence, roof 

plane detection plays a crucial role in solar energy assessment. In this study, a detailed comparison was presented between aerial 

photogrammetry data and LIDAR data for roof plane recognition applying RANSAC (Random Sample Consensus) algorithm. 

RANSAC algorithm was performed to 3D-point clouds obtained by both LIDAR (Laser Ranging and Detection) and aerial 

photogrammetric survey. In this regard, solar energy assessment from the results can be applied. It is shown that, the RANSAC 

algorithm detects building roofs better on the point cloud data acquired from airborne LIDAR regarding completeness within model, 

since aerial photogrammetric survey provides noisy data in spite of its high-density data. This noise in the source data leads to 

deformations in roof plane detection. The study area of the project is the campus of Istanbul Technical University. 
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1. INTRODUCTION 

In the recent past, the interest in accurate and detailed 3D 

building data acquired by airborne LIDAR systems has been 

growing. Building Information Modelling (BIM), snow load 

capacity estimating and modelling and solar potential analysis 

can be given as examples of application areas for building 

detection (Jochem et al., 2009b). Today, solar energy can be 

produced on the rooftops of private houses as easily as in 

energy companies after detecting proper building roofs. 

 

Building reconstruction is applied by algorithms generally on 

planar surfaces. However, a fundamental issue which has not 

been completely solved occurs in building detection. The data 

from laser scanning measurements taken in city area mostly 

includes noise and incompleteness caused by tree points or 

reflection (Huang et al., 2011).  

 

In this contribution, a comparison of aerial photogrammetry and 

LIDAR data in roof plane detection presented with 

completeness values of each data source. The main aim of this 

contribution is evaluating two different data inputs and 

concluding which data is superior to another in the aspect of 

accuracy, correctness and completeness. 

 

2. DATA AND METHODOLGY 

2.1 Study area 

Study area of the project is located in Istanbul Technical 

University-Ayazaga Campus. Building Arı 1 was selected on 

both aerial images and LIDAR point clouds to apply the 

algorithm. Besides single buildings and block buildings, the 

study area contains small objects such as cars and vegetation 

types. 

 

 
2.2 Data 

In the study, two distinct data sources were used: LIDAR data 

and aerial photogrammetry data. 

 

2.2.1 Airborne LIDAR data 

 

The airborne LIDAR point cloud was obtained using a laser 

scanning system. The horizontal and vertical accuracy of the 

LIDAR data are about 8 cm. Average point density of the data 

is 16 points/m-2. 

 

2.2.2 Aerial photogrammetry data 

 

For taking aerial photographs, DJI Phantom 4 Pro was used. 

The UAV has a sensor with a calibrated focal length of 3.61 

mm. The following flight parameters were selected: Forward-

overlap and side-overlap is respectively 80% and 70%. The 



 

UAV was flown at a height of 80 m. In total, 288 high 

resolution images were acquired from the flight. Approximately 

a GSD (Ground Sampling Distance) of 3 cm/pixel was obtained.  

 

 

2.3 RANSAC algorithm 

RANSAC (Random Sample Consensus) algorithm developed 

by Fischler and Bolles (1981) is a method to create appropriate 

solutions of mathematical models in iteration processes. 

Parameters corresponding to the mathematical model are 

defined before iteration process. A consensus solution is 

obtained as the best result (Carrilho and Gallo, 2018). 

 

Number of trials k can be calculated by: 

 

                         (1) 

 

In the equation 1, n is the minimum number of points which is 

required for the calculation of the corresponding model. Since 

minimum 3 points can define a plane, n is equal to 3 in the case 

of planar models. Probability z is a minimum probability value 

of finding at least one proper set of observations in N iterations. 

z is usually in the range between 0.90 and 0.99. w is the 

probability of observations allowed to be incorrect (in 

percentage).  

 

During the iteration process, algorithm is performed many times 

and corresponding data set is removed from the original point 

cloud. The next iteration continues on the remaining points. 

Finally, iteration is terminated when the number of non-

modelled points is smaller than defined threshold (Kurdi et al., 

2008). 

 

An essential advantage of RANSAC algorithm is that number of 

trials and data size are not directly dependent on each other. 

Thus, iterations can be quickly obtained on even high-density 

point clouds (Carrilho and Galo, 2018). 

 

Other advantages of RANSAC algorithm are listed below: 

o Its concept is simple to apply 

o It is a general algorithm and used in a wide variety of 

applications 

o It can robustly work, even if the data includes more 

than 50% of outliers (Schnabel et al., 2007). 

 

3. APPLICATION 

A software, namely Agisoft Photoscan, was utilized to create a 

dense point cloud from the aerial images. Dense point clouds 

were created using 20 aerial images. 

 

A height threshold was defined for classification of objects 

depending on the Z coordinates. In fact, the points below a 

predefined height threshold were eliminated from original data 

to separate ground and non-ground points. For dataset Arı 1, 

threshold values were determined on dense point cloud and 

LIDAR data, respectively: 60 and 93 m. 

 

RANSAC parameters used in the code are the followings: 

z is a scalar value of the noise standard deviation. P_inlier 

(default vale of P_inlier = 0.99) is a Chi-squared probability 

value for inlier points. T_noise_squared is error threshold that 

overrides sigma, when it is provided. Max_iters (default = 0) is 

the maximum number of iterations allowed and min_iters 

(default = ∞) is the minimum number of iterations required.  

 

Sigma, P_inlier, min_iters and T_noise_squared are accepted as 

0, 1000, 0.99 and 0.0016, respectively.  

 

 
 

Figure 1: Flowchart of the proposed roof plane extraction 

method 

 

4. RESULT AND DISCUSSION 

As shown in the following figures, roof planes were extracted 

separately for LIDAR and aerial photogrammetric data by using 

RANSAC algorithm. The results from different data sources 

were compared to each other regarding their error, accuracy, 

correctness, completeness, by calculating confusion matrix of 

each plane. The values of reference class were manually 

calculated on both LIDAR and aerial photogrammetric data. 

 

 
 

Figure 2: Detected roof plane from LIDAR data 

 



 

 

Figure 3: Detected roof plane from aerial photogrammetry data 

 

Table 1. shows confusion matrix containing True Positive (TP), 

True Negative (TN), False Positive (FP) and False Negative 

(FN) values.  
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Table 1: Confusion matrix for two classes (Alpaydin E., 2010). 

 

TP: True Positive refers to plane points which are included 

inside the detected model. 

TN: True Negative refers to non-plane points which are outside 

the detected model. 

FP: False Positive refers to plane points which are not included 

inside the detected model. 

FN: False Negative refers to non-plane points which are 

included inside the detected model. 

 

 

 

 

Error, accuracy, correctness, completeness of the detected plane 

model can be easily derived from the confusion matrix values. 

Formulas of the values are mentioned below (Alpaydin E., 

2010). 
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The following tables indicate a result of the proposed method. 

In the results, error means the probability of incorrectly detected 

points in total. In contrast to error, accuracy refers to the 

probability of correctly detected points in total. Correctness is 

the probability of correctly detected plane points. Completeness 

means how many points that are detected as plane points are 

plane points in the reality. 

 

Some planes were not detected by using dense point cloud from 

aerial images. Because there are many tree points on the 

rooftops and those points cover a part of roof planes. But, on 

the LIDAR data, all the planes were extracted without any 

problem.  

 

According to the results above, RANSAC algorithm extract 

more completed model planes on LIDAR data. Because dense 

point cloud created by aerial photogrammetry produces noisier 

data. Noisy data can lead to incompleteness in model. But, 

LIDAR data has more error which means how many point in 

total are mistakenly detected.  

Accuracy value which means how many points in total are 

correctly detected is usually better on dense point cloud data. 

Also correctness value which means how many plane points are 

correctly detected is also better on dense point cloud data, in 

contrast to LIDAR data. 

 

Table 2: Confusion matrix values of Arı 1 dataset 

 

A
rı

 1
 TP TN FP FN 

Aerial p. 

data 
LIDAR data 

Aerial p. 

data 
LIDAR data 

Aerial p. 

data 
LIDAR data 

Aerial p. 

data 
LIDAR data 

1 13834 16937 61325 8887 28 478 35801 21188 

2 
12378 

 

16988 

 

64533 

 

8349 

 

340 

 

572 

 

32593 

 

21726 

 

3 
11664 

 

16949 

 

60127 

 

8472 

 

265 

 

404 

 

36999 

 

21603 

 

4 
9630 

 

15272 

 

64361 

 

9238 

 

117 

 

571 

 

32765 

 

20837 

 

5 
7855 

 

11268 

 

76574 

 

7464 

 

286 

 

595 

 

20552 

 

22611 

 

6 - - - - - - - - 



 

           

Table 3: Error, Accuracy, Correctness and Completeness of Arı 1 dataset 

 

 

5. CONCLUSION 

In recent years, a lot of algorithms have been developed 

which detect roof planes. RANSAC algorithm which is one 

of the most used algorithms on LIDAR data to extract 

mathematical shapes is represent in this study for a 

comparison of between aerial photogrammetry and LIDAR 

data. However, as a main result of this study, data source is 

very important for successful roof plane detection. In block 

buildings, algorithm has difficulties to find plane points 

correctly. It is concluded that irregular shapes of the roofs are 

not successfully detected. Moreover, tree points or ground 

points can negatively affect the roof plane detection.  

 

In future studies, larger roof planes can be preferred for better 

accuracy analysis. For aerial photogrammetry data, more 

photos should be used. Because, the planes acquired by aerial 

photogrammetry have many gaps on the rooftop plane. These 

gaps could be filled with the help of more aerial photographs 

and completeness value could be increased in this manner.  

 

Reference class can be defined according to other criteria in 

forthcoming studies. Defining a reference class manually like 

in this study can cause incorrect classification of points. 

Taking into account the results of the study, laser data and 

optical data can be integrated and used together, since they 

complement each other. 

 

REFERENCES 

Carrilho, A. C., & Galo, M. (2018). Extraction of building 

roof planes with stratified random sample consensus. The 

Photogrammetric Record, 33(163), 363-380. 

 

Fischler, M. A., & Bolles, R. C. (1981). Random sample 

consensus: a paradigm for model fitting with applications to 

image analysis and automated cartography. Communications 

of the ACM, 24(6), 381-395. 

 

Jochem, A., Höfle, B., Rutzinger, M., & Pfeifer, N. (2009). 

Automatic roof plane detection and analysis in airborne lidar 

point clouds for solar potential assessment. Sensors, 9(7), 

5241-5262. 

 

Schnabel, R., Wahl, R., & Klein, R. (2007, June). Efficient 

RANSAC for point‐cloud shape detection. In Computer 

graphics forum (Vol. 26, No. 2, pp. 214-226). Oxford, UK: 

Blackwell Publishing Ltd. 

 

 

 

 

Tarsha-Kurdi, F., Landes, T., & Grussenmeyer, P. (2008). 

Extended RANSAC algorithm for automatic detection of 

building roof planes from LiDAR data. The photogrammetric 

journal of Finland, 21(1), 97-109. 

 

 

 

 

 

Arı 

1 

Error Accuracy Correctness Completeness 

Aerial p. 

data 

LIDAR 

data 

Aerial p. 

data 

LIDAR 

data 

Aerial p. 

data 

LIDAR 

data 

Aerial p. 

data 

LIDAR 

data 

1 32 % 46 % 100 % 97% 100 % 97% 46 % 68 % 

2 30 % 47 % 97 % 97 % 97 % 97 % 47 % 70 % 

3 34 % 46 % 98 % 98 % 98 % 98 % 46 % 66 % 

4 31 % 47 % 99 % 96 % 99 % 96 % 47 % 69 % 

5 20 % 55 % 96 % 95 % 96 % 95 % 55 % 80 % 

6 - - - - - - - - 


