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ABSTRACT: 
 
Improving the accuracy of mapping fuel models is important for fuel management decisions. The 
overall aim of this paper is to develop the use of LIDAR (LIght Detection and Ranging) remote 
sensing to accurately assess fuel models in East Texas. More specific goals include: (1) developing 
LIDAR derived products and the methodology to use them for assessing fuel models; (2) investigating 
the use of several techniques for data fusion of LIDAR and multispectral imagery for assessing fuel 
models; (3) investigating the gain in fuels mapping accuracy when using LIDAR as opposed to 
QuickBird imagery alone; and (4) producing spatially explicit digital fuel maps. We employ a unique 
approach to classify fuel models using a combination of LIDAR height bins and multispectral image 
data. According to Anderson (1982), a total of thirteen surface fuel models are identified for the United 
Stated, each varying in amount, size, and arrangement of the fuel model. A total of seven fuel models 
were identified in our study area: Fuel model 1, Fuel model 2, Fuel model 4, Fuel model 5, Fuel model 
7, Fuel model 8, and Fuel model 9. Different image processing approaches were used to improve the 
overall accuracy of image classification. Supervised image classification methods provided better 
accuracy (90.10%) with the fusion of airborne LIDAR data with QuickBird data than with QuickBird 
imagery alone (76.52%). 
According to our results, LIDAR derived data provide accurate estimates of surface fuel parameters 
efficiently and accurately over extensive areas of forests.  
 
 

11.INTRODUCTION 
 
Fires have become intense and more frequent all 
over the world. Many forest fires occur each year 
and a huge amount of forest areas are lost in the 
United States. Fire managers must provide more 
accurate fire behavior predictions, and there is a 
need to reflect on some factors such as canopy 
height, dead and live fuel load, and percent of 
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canopy cover because these factors are known as 
fuel types (Pyne et al., 1996).  
According to Anderson (1982), fuels have been 
classified into four groups: grasses, brush, 
timber, and slash.  Fire behavior can differ if 
there is a direct relationship between the fuel load 
and its distribution among the fuel particle size 
classes (Anderson, 1982). 
 
 
 



A total of thirteen surface fuel models are 
identified for the United Stated, each varying in 
amount, size, and arrangement of the fuel model 
(Anderson, 1982). 
 
Multispectral image classification is an important 
technique of remote sensing and image analysis.  
There are different ways to perform classification 
including supervised or unsupervised, parametric 
methods such as Maximum likelihood 
classification or nonparametric such as nearest-
neighbor classifiers, and contextual or 
noncontextual algorithms (Jensen, 2005).  
 
LIDAR allows for more accurate and efficient 
estimation of canopy fuel characteristics over 
large areas of forests (Andersen et al., 2005).  
LIDAR sensors are high resolution, active remote 
sensing tools that use lasers to measure the 
distance between the sensor and an object.  This 
technology is useful for obtaining accurate, high 
resolution measurements of surface elevations.  

 
There is a limited number of studies in the 
literature that used airborne scanning laser 
(LIDAR) systems to estimate forest fuel 
parameters.  Riano’s (2003) study has 
demonstrated that a semi-automated technique 
can be used to extract forest fuel distribution 
from LIDAR data in forests dominated by conifer 
and deciduous tree species.  The results 
demonstrated that LIDAR can provide detailed 
spatial information on forest attributes relevant to 
fire behavior that may also be used for direct 
input into spatial fire behavior models.  Morsdorf 
et al. (2004) used a k-means clustering algorithm 
to measure individual tree crown dimensions for 
forest fire risk assessment in Switzerland.  In 
Andersen et al.’s (2005) study on regression 
analysis was used to develop predictive models 
relating a variety of LIDAR-based metrics to the 
canopy fuel parameters.  The parameters were 
estimated from inventory data collected at plots 
established in stands of varying condition within 
Capitol State Forest, in western Washington 
State. 

 
The overall aim of this paper is to develop a 
methodology to use LIDAR and multispectral 
remote sensing to accurately and effectively 
assess fuel models in East Texas.   The specific 
objectives of this paper are to: (1) develop 
LIDAR-derived products and the methodology to 
use them for assessing fuel models; (2) 
investigate the use of several techniques for data 
fusion of LIDAR and multispectral imagery for 
assessing fuel models; (3) investigate the 
accuracy of fuel maps generated using LIDAR as 
opposed to the generation of fuel maps from 
satellite imagery alone; and (4) produce spatially 
explicit digital fuel maps.   
 

2. MATERIALS and METHODS 
 
2.1 Study Area 
Our study area is located in east Texas near 
Huntsville.  Forest stands in study area are in 
various stages of development, including pine, 
pine-hardwood mixed stands, and hardwood 
stands (Mutlu et al., in press).  The study area 
also includes open ground with fuels consisting 
of grasses and brushes.  Figure 1 represents the 
QuickBird image of the study area. 

  

 
 
Figure 1. The location of our study area and false 
color composite of a QuickBird image 
 
2.2  Data 



Three types of data were used in this project: 
LIDAR data, in-situ data, and multispectral 
QuickBird data. 
 
2.3 LIDAR Data 
LIDAR scanning data was provided by M7 
Visual Intelligence Inc. in LAS format.  LIDAR 
data were acquired over an area of 6,474.9 
hectare (25 square miles) in leaf off condition 
during March 2004.   A total of 47 flight lines 
were collected over the study area, with 28 flight 
lines obtained from East to West and 19 flight 
lines obtained from North to South.    

 
2.4 Ground Inventory Data 
In order to assess fuel models and forest 
inventory parameters and determine the accuracy 
of airborne LIDAR estimates, in-situ data were 
gathered for this study from May 2004 to July 
2004. A total of 62 plots including a total of 1005 
trees were measured in the study area.  Potential 
plot locations were initially identified using 
ground reconnaissance to ensure adequate 
sampling of the common fuel types in east Texas.   

 
Fuel models can be quickly estimated by taking a 
photo series including detailed data for each fuel 
complex shown (Reeves, 1988).  Six digital 
photographs were taken from each plot center, 
with two photos taken from a general view and 
four photos taken facing north, south, east, and 
west directions. A total of seven fuel models 
were identified in our study area:  Fuel model 1, 
Fuel model 2, Fuel model 4, Fuel model 5, Fuel 
model 7, Fuel model 8, and Fuel model 9. Each 
plot fuel model type was determined by the 
authors and specialists from Texas Forest Service 
personnel involved with fire behavior and 
mitigation efforts, in a joint meeting.  Each of the 
six digital photographs available for each plot, as 
well as field inventory data, were analyzed to 
determine fuel models by using recorded field 
data, knowledge of local fuel models, and fuel 
models descriptions in Anderson’s (1982) study.  
Table 1 represents the description of each fuel 
model.  

Table 1.Description of fuel models. 
 

Fuel Model  Typical Fuel Complex 
Grass and grass-dominated 
1 Short grass (foot) 
2 Timber (grass-understory) 
         Chapparral and shrub fields 
4 Chapparal (6 feet) 
5 Brush (2 feet) 
7 Southern rough 
            Timber litter 
8 Closed timber litter 
9 Hardwood litter 

 
2.5 Processing Approach 
The overall study steps to derive fuel maps are 
illustrated in Figure 2. 
 

 
Figure 2: Overall study steps 
 
2.6 Height Bins Approach 
 The height bin approach was used to generate a 
LIDAR-derived multiband dataset from scanning 
data, with each band corresponding to a height 
bin.  The height bins approach makes use of the 
entire LIDAR point cloud.  LIDAR bins were 
created by counting the occurrence number of 
LIDAR points within each volume unit and 
normalizing by the total number of points. The 
first four height bins are generated for 0.5m 



height intervals to afford a better characterization 
of vegetation that defines surface fuels. The 
upper bins are spaced at 3m and 5m, band 6 to 
10. The last bin is generated from laser hits above 
30m.   

3. DATA FUSION APPROACH 

In this study, three different data fusion 
approaches were used: LIDAR-multispectral 
stack, principal component analysis (PCA), and 
minimum noise fraction (MNF).   
 
3.1 LIDAR-derived Stack 
By using ENVI 4.2 (Research Systems, Inc.) we 
built a new multiband image with 2.5 m spatial 
resolution. This image includes a total of 10 
bands and will be subsequently referred to as the 
LIDAR-QuickBird Stack.  As is shown in Figure 
3, the first four bands are taken from the 
Quickbird image, the fifth band is LIDAR 
derived canopy cover, sixth, seventh, eighth, and 
ninth bands are obtained from the first four 
LIDAR height bins (0-0.5, 0.5-1.0, 1.0-1.5, 1.5-
2.0 meters), and the last band is obtained from 
canopy height model variance.  We used only the 
first four LIDAR bins by assuming they 
characterize best the vertical structure of surface 
fuels within a 2m vertical canopy space adjacent 
to the ground. 
  

 
Figure 3: LIDAR-QuickBird stack image 
 
3.2 Principal Component Analysis (PCA) 
PCA was applied to the LIDAR-QuickBird stack 
image, which has ten bands.  We used the first 

five of the ten PCs for our subsequent image 
classification. The PCA transformation is based 
on the variance and covariance of the data set.  
Eigenvalues, variance, and eigenvector were 
extracted for each PC. The first five components 
that we used for image classification account for 
approximately 99 percent of the total variance.   
 
3.3 Minimum Noise Fraction (MNF) 
MNF was applied to the LIDAR-QuickBird stack 
image that has ten bands.  MNF determines the 
dimensionality of image data, separates noise in 
the data, and reduces the computational 
requirements for processing (Boardman and 
Kruse, 1994). The MNF transform basically 
consists in two coupled Principal Components 
transformations (Green et al. 1988). Six of the ten 
MNF bands were stacked.  Eigenvalues, 
percentage of variance, and cumulative variance 
were calculated for each MNF band. The first six 
MNF bands account for approximately 97 
percent of the total variance.  As such, we 
decided to use the first six components of the 
MNF band transformed image for our subsequent 
processing. 
 
3.4 Image Processing 
The first step in undertaking a supervised 
classification is to define the areas that will be 
used as training sites for each fuel model class.  
Seven initial classes were considered and 
classification accuracy was evaluated using 
confusion matrixes and K-hat statistics. The 
Region of interest (ROI) actually corresponds to 
our field plots. A total of twenty-three polygons 
were selected which results in a total of 1840 
pixels for each of the QuickBird image, LIDAR-
QuickBird stack image, principal component 
image, and minimum noise fraction image. 
Supervised image classification was performed 
using parametric decision rules, such as the 
Maximum Likelihood and the Mahalanobis 
Distance decision rules with the multispectral 
QuickBird image, the LIDAR-QuickBird stack 
image, the principal component image, and the 
minimum noise fraction image.   



 
4. RESULTS and DISCUSSION 

 
The results of four classification methods and 
classification accuracies were assessed.  Among 
all the supervised image classifications that we 
applied to our images, Maximum Likelihood 
yielded the best results for the multispectral 
QuickBird image with 76.52 % overall accuracy 
and 0.68 kappa coefficient.  Mahalanobis 
Distance yielded the best results for the LIDAR-
QuickBird stack image with 87.17 % overall 
accuracy and 0.83 Kappa Coefficient.  Figure 
4(a) represents the result of multispectral 
QuickBird image classification; Figure 4(b) 
illustrates the result of the LIDAR-QuickBird 
stack image.  Figure 4 (c) represents the results of 
the PC stack image.  The Mahalanobis Distance 
decision rules classification yielded the best 
results of all the supervised image classification 
decision rules with an accuracy assessment of 
90.10% and with a Kappa Coefficient of 0.86 for 
a new MNF image.  Figure 4(d) illustrates the 
output of this classification process. Compared to 
the multispectral QuickBird image, LIDAR-
QuickBird stack, and PC stack images accuracy, 
MNF provided the best result by having the 
highest accuracy.  
 

   
        (a)                            (b) 

 
  (c)                          (d) 
 
                    
Figure 4. (a) The classification result of 
multispectral QuickBird image, (b) the 
classification result of data fusion stack of 
LIDAR and multispectral imagery, (c) the 
classification result of PC stack image, and (d) 
the classification result of MNF-fused stack 
image.  
 

5. CONCLUSION 
 

Results from this study indicate that LIDAR can 
be used to generate accurate estimates of surface 
fuel models efficiently and accurately over 
extensive areas of forests.  LIDAR derived 
products were able to assess fuel models with 
high accuracy. The Maximum Likelihood and 
Mahalanobis Distance supervised image 
classifications were effective in this study.  The 
method that we developed by using LIDAR 
height bins fused with multispectral data has 
great potential for becoming a standard approach 
for mapping fuels with LIDAR and multispectral 
imagery. PCA did not provide improved results. 
The data fusion approach, combining LIDAR and 
multispectral QuickBird imagery, improves the 
overall accuracy of image classification of fuels.  
This study achieved a detailed mapping of fuels 
for input into fire behavior models such as 
FARSITE and FlamMap.   
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