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ABSTRACT:

Perspective-n-Point (PnP) problem is the estimation of the pose (location and orientation) of a calibrated camera from 3D-2D point
correspondences, that is, three-dimensional coordinates of objects in a world coordinate system and corresponding pixels in two-
dimensional images. PnP algorithms are used in computer vision, augmented reality, robotics, photogrammetry etc. Distribution of
the points in the image and the accuracy of the 3D information are important on the accuracy of the estimated pose of the camera.
In this paper, keypoints with previously known coordinates and keypoints detected in images taken from a drone are matched. Then,
the robustness of PnP algorithms is investigated by adding mismatched keypoints into the true matches. In addition, the effect of
the distribution of the points in the image is investigated. The entire study was carried out using high-resolution orthophotos. Direct
Linear Transformation (DLT), Efficient PnP (EPnP), LHM and Robust PnP (RPnP) were tested as pose estimation algorithms. As
a result, it is observed that the RPnP and LHM algorithms performed better than the other pose estimation algorithms when
mismatched keypoints are added. It is also observed that RPnP and LHM give accurate results when the distance error (between the
true match and the false match) is increased. RPnP has an advantage over LHM in terms of computational cost. In the case of
homogeneous distribution of keypoints, it is observed that PnP algorithms estimate more accurate position and orientation than in
the case of nonhomogeneous distribution.

1. INTRODUCTION data. The entire study was carried out using high-resolution

. . L . orthophotos.
PnP algorithm is the estimation of pose (position and

orientation) of a calibrated camera using points from the
camera images (i.e. the moving image points) and the
matched 3D world coordinates (position, altitude) of these
points (i.e. the fixed image (3D) points). which can be
acquired from readily available maps, orthophotos, rectified
aerial images etc. along with the elevation model of the
acquired region (Hartley & Zisserman, 2003) “Moving
points” represent keypoints detected from the image. “Fixed
points” are previously detected features from reference
images, so their coordinates are known. Pose estimation has
a wide range of usage in robotics (Taylor & Kleeman, 2001),
computer vision (Forsyth & Ponce, 2012), photogrammetry
(McGlone, 2004), augmented reality etc.

This paper is dedicated to investigation of some well-known
PnP algorithms by experimenting on both real and synthetic
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The effects of number of mismatches, effects of distribution
of ground control points over the moving image and effects
of distance error (Figure 5) between true matches and false
matches on state of art PnP algorithms were investigated in
this paper.

The rest of the paper is organized as follows. The background
of PnP algorithms and the necessary steps for accurate
positioning before applying PnP algorithms are reviewed in
Section 2 along with the details of the investigated
algorithms. In Section 2.1, 2.2 and 2.3, Steps to be followed
before PnP algorithms are mentioned. Due to lack of precise
operation at these steps, PnP algorithm should be robust to
inaccurate results of these steps. The experimental results
using both synthetic data and real data are given in Section 3
and are evaluated in Section 4.
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2. BACKGROUND

Perspective n Point problem (PnP) was introduced by
Fischler & Bolles (Fischler, Bolles, 1981). PnP is the
estimation of camera pose using correspondence between 3D
fixed points and their 2D projection. (Li, Xu, & Xie, 2012)
PnP can be defined based on distances or transformations
(Hu, 2002). The distance-Based Approach (Fischler et al.,
1981) is the computation of the distances between control
points and the optical center of the camera. Position
estimation from n corresponding points and derivation of
rotation and translation parameters from image plane and
camera plane corresponds to Transformation-Based
Approach (Horaud, Conio, Leboulleux, & Lacolle, 1989).

P3P is minimal form of PnP problem. It is solved by three
points correspondence. (Grunert, 1841)

The Direct Linear Transformation was developed by (Abdel-
Aziz & Karara, 1971) as a solution to the PnP problem. DLT
gives accurate results with large data set.

EPnP (Lepetit, Moreno-Noguer, & Fua, 2009), one of the
noniterative methods, gives accurate solution for n > 3.

LHM is one of the iterative methods, introduced by (Lu,
Hager, & Mijolsness, 2000).

RPnP is introduced by Li and Chi (Li et al., 2012), which is
one of the noniterative method.

In order to find the pose of a camera, the image taken from it
(which will be called as “the moving image”) and a reference
image (which will be called as “the fixed image”) whose
world coordinates (position and altitude) are available
(e.g.an orthophoto) are required. Some pose estimation
algorithms (Moreno-Noguer, Lepetit, & Fua, 2008) do not
need a correspondence between the moving and fixed
images. This type of algorithms calculates both the pose and
the correspondences simultaneously. In the scope of this
study, only pose estimation algorithms are investigated.
Correspondence is provided by image matching algorithms.

The most important issue for position and orientation
estimation applications is robustness. Robustness refers to an
ability to give correct results against drawbacks of
algorithms related to image matching algorithms, outlier
rejection algorithms and other related methods in the
processing pipeline. One of the major drawbacks of the
image matching algorithms is mismatching of detected
keypoints. (Figure 4) Keypoints detected and described from
two corresponding images might have similar feature vectors
even if matched control points do not belong to the same
location in the world. This type of matched features is named
as “outliers”. PnP algorithms are influenced adversely by
outliers (Ferraz, Binefa, & Moreno-Noguer, 2014). The
computed location and orientation information will be
inaccurate if PnP algorithm uses incorrectly matched
keypoints. Therefore, outlier elimination methods are critical
to get rid of incorrect matches. Distance-Based Approach is

an outlier elimination method (Fischler et al., 1981). Despite
using outlier rejection methods, corresponding points might
include some wrong matches. Therefore, PnP algorithm also
must be robust for additional wrong matches.

Furthermore, homogeneous distribution of the corresponding
points in the covered image area is another crucial issue
(Zhu, Wu, & Xu, 2006). In the case of homogeneous
distribution of corresponding points, PnP algorithms
estimate accurate position and orientation.

2.1. Internal Camera Calibration

The internal camera calibration is performed to estimate
major parameters like the focal length and the parameters
necessary to eliminate distortions in the image. The
distortions are common problems encountered in image
processing applications.  Especially in vision-based
navigation systems, radial distortion in the images should be
corrected in order to get accurate results in the position and
orientation estimation with the images taken from the
cameras (Kukelova, Bujnak, & Pajdla, 2013).

The most common of these distortions are radial distortions.
Radial distortions can be examined under two main headings
in terms of Barrel and Pincushion Distortion.
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Figure 1. a) No Distortion, b) Barrel Distortion, c)
Pincushion Distortion

Figure 2. a) Image taken by drone (distorted image)
b) Undistorted Image with radial distortion
coefficients



2.2. Outlier Elimination

Feature matching using descriptors computed from detected
keypoints have become popular. However, local descriptor
matching can produce outliers. RANSAC (Fischler et al.,
1981) can robustly fit a model to data in the presence of false
matches.

RANSAC is a well-known estimation method used to
robustly fit a model to data in presence of outliers.
(Bhattacharya & Gavrilova, 2012) Iteratively, RANSAC
picks a random subset of matches from the putative match
list and fits a model to them. For fitting a model, a minimum
of four keypoints are required. Then, the model is compared
to all other correspondences in the putative match list.
(Bhattacharya & Gavrilova, 2012)

Next, keypoints which are not appropriate to the fitted model
are eliminated. As we see Figure 4, features described in the
moving image (left) can be matched with wrong features in
the fixed image (right). After outlier rejection method,
outliers can be eliminated with respect to geometric

a) b)
Figure 3. a) Putative data set b) Fitted line with RANSAC

transformation and fitted model by RANSAC. Despite using
outlier rejection methods, corresponding points might
include some wrong matches. So PnP algorithm must be
robust for additional false matches.

b)

Figure 4. a) Matched points before outlier rejection
b) Matched points after outlier rejection
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Figure 5. Distance error representation

In Figure 5, Distance error between the true match and the
false match is represented as “d”. (Eq 1)

d =/(ag—a;)? + (by — by)? 1)

2.3. Homogeneity

Distribution of the keypoints and accurate position
estimation are directly related (Zhu et al., 2006). In the
images, due to geographical characteristics of the terrain,
height differences may occur from pixel to pixel. Under these
circumstances, moving points should be distributed on the
whole image for accurate image registration and
photogrammetry.

Distribution of the keypoints is calculated using a special
metric which was proposed by Yahyanejad & Rinner
(Yahyanejad & Rinner, 2015). Based on this metric, in this
paper, synthetic data was generated with distribution
coefficient (Figure 6).

Coordinates of the keypoints are randomly generated
between (-i) and (i) (Eq. 2). Totally 10 keypoints were
generated.

Pyp : x =random[—i i]; (2)
y = random[—i i];
z = random[ a b];

where,i : distribution coef ficient

a,b : constant integer number € Z

=
i=1 i=2
i=3 i=4

Figure 6. The changes of the distribution of the keypoints
with respect to coefficient “i”



3. RESULTS
3.1. Experiments with Synthetic data
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Table 1. Effects of Number of outliers and Distance error on PNP algorithms for synthetic data

To investigate the effects of number of false mathes on the PnP
algorithms, firstly synthetic data is created. Firstly, 3D fixed
points were randomly generated. Then, synthetic moving points
were by projection (Eq. 3). In the experiments which were
performed with synthetic data, we did not take intrinsic camera
parameters, radial distortions, tangential  distortions,
geographical factors and other issues into account. That means
pinhole camera properties are used in synthetic data and
experiments. Therefore, only the effects of the false matches and
the effects of distance error (Figure 5) between original points
and projected points were investigated.

X = X3D(1':).X3D(2':)
2 X3p(3,:)" X3p(3,:)

xfi 3)

where;
f: focal length (in pixel)
X3D: randomly generated 3D points (3 X 1 matrix)
X2D: projected 2D moving points (2 X 1 matrix)

After generation of the 2D points, false matches were added to
inlier points one by one. While outlier points were generated,
different pixel errors were inserted. The number of outliers is 1
through 5 and, pixel error differs from 0.5 to 180.5 (Table 1).

In the first experiment (Figure 7), pixel errors were kept constant
and only the number of outlier points has been increased from 1
to 5. The pixel error was fixed to 100 pixels. In total, 10 matched

points were generated randomly. Number of outliers was
increased one by one. Therefore, total number of matched points
were constant while adding outliers.

For Figure 6 | Initial Step | Step | Step | Step | Step
Condition | 1 2 3 4 5

Total 10 10 10 10 10 10
Number

Number of | 0 1 2 3 4 5
Outlier

Table 2. Steps for adding outliers to inlier points.

In the second experiment (Figure 8), the number of outliers was
kept constant and only the pixel error of outliers has been
increased from 0.5 to 180.5. Number of outliers was fixed to 1 in
Figure 8. There were totally 10 matched points. In this situation,
9 inliers and 1 outlier were given to PnP algorithms.

For Figure 7 | Initial Step | Step | Step | Step | Step
Condition | 1 2 3 4 5

Total 10 10 10 10 10 10

Number

Number of | O 1 1 1 1 1

Outlier

Table 3. Steps for adding outliers to inlier points
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Figure 7. Effect of number of outliers on PnP algorithms
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Figure 9. The effect of the distribution of the keypoints on PnP algorithms

3.2. Experiments with Real data
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Table 4. Effects of Number of outliers vs Distance error on PnP algorithms for real data
To investigate effects of number of false mathes on the PnP points, false matches were added to inlier points one by one.
algorithms using real data, corresponding ground control While outlier points were generated, different pixel errors
points are picked manually as keypoints. For every image were inserted. The number of outliers is 1 through 5 and,
pair, 10 handpicked points were chosen. Real data consist of pixel error differs from 0.5 to 180.5 (Table 4). In Figure 11,
2D and 3D data set which are selected from images taken Pixel errors were kept constant and only the number of
from an aerial vehicle and orthophotos available for the flight outlier points has been increased from 1 to 5. The pixel error
region. In the experiments with real data, intrinsic camera was fixed to 100 pixels in Figure 11. Number of outlier was
parameters, radial distortions, tangential distortions, increased one by one. Therefore total number of matched
geographical factors, and other issues were taken into points were constant while adding outlier. In Figure 10,
account. To remove radial distortion and tangential number of outlier was kept constant and only the distance
distortion, moving points were undistorted by MATLAB error between true match and outlier has been increased from

Camera Calibration Toolbox. After undistorting the 2D 0.5 to 500.
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Figure 12. Some examples of the Image data set along with
the handpicked keypoints
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Figure 13. Computational cost comparison (Li et al., 2012)

According to synthetic experimental results, LHM and RPnP
are robust methods to increasing number of outliers. The
performance of PnP algorithms is affected adversely by
increasing distance error (between true match and outlier)
(Figure 5). RPnP and LHM also are robust to distance error.
In the case of homogeneous distribution, the performance of
all PnP algorithms is enhanced. Results obtained from
synthetic experiments are satisfied by experiments on real

data.



4. CONCLUSION

In this paper, well-known PnP algorithms were investigated
and compared with synthetic and real data in terms of effects
of false matches, effect of distribution of the matched
keypoints, and the effects of distance error between original
points and projected points. Experiments with synthetic and
real data show that RPnP and LHM can effectively cope with
data sets which include drawbacks investigated in this paper.
Although LHM generally works better than RPnP under
some drawbacks, the computational time is considerably
longer for use in real-time applications. (Figure 13)
Therefore, it can cause problems in real-time applications. So
RPnP is a wvery efficient and robust method for
photogrammetry and computer vision applications especially
real-time applications.

ACKNOWLEDGEMENTS

This study was partially supported in the framework of
TUBITAK-TEYDEB 1511 program project no: 1170179

REFERENCES

Abdel-Aziz, Y. |., & Karara, H. M. (1971). Direct Linear
Transformation from Comparator Coordinates into Object
Space Coordinates in Close-Range Photogrammetry.
Photogrammetric  Engineering & Remote Sensing.
https://doi.org/10.14358/PERS.81.2.103

Bhattacharya, P., & Gavrilova, M. (2012). Improving
RANSAC feature matching with local topological
information. Proceedings of the 2012 9th International
Symposium on Voronoi Diagrams in Science and
Engineering, ISVD 2012.
https://doi.org/10.1109/ISVD.2012.8

Ferraz, L., Binefa, X., & Moreno-Noguer, F. (2014). Very
fast solution to the PnP problem with algebraic outlier
rejection. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition.
https://doi.org/10.1109/CVPR.2014.71

Fischler, M. A, Fischler, M. A., Bolles, R. C., & Bolles, R.
C. (1981). Random sample consensus. A paradigm for model
fitting with apphcahons to image analysm and automated
cartography. Graphics And\nlmage Processing.

Forsyth, D. A., & Ponce, J. (2012). COMPUTER VISION A
MODERN APPROACH. In Uma ética para quantos?
https://doi.org/10.1007/s13398-014-0173-7.2

Hartley, R., & Zisserman, A. (2003). Multiple View
Geometry in Computer Vision in computer vision.
Computer-Aided Design.

Horaud, R., Conio, B., Leboulleux, O., & Lacolle, B. (1989).
An analytic solution for the perspective 4-point problem.
Computer Vision, Graphics and Image Processing.
https://doi.org/10.1016/0734-189X(89)90052-2

Hu, Z. (2002). A note on the number of solutions of the
noncoplanar P4P problem. IEEE Transactions on Pattern
Analysis and Machine Intelligence

Kukelova, Z., Bujnak, M., & Pajdla, T. (2013). Real-time
solution to the absolute pose problem with unknown radial
distortion and focal length. Proceedings of the IEEE
International  Conference  on  Computer  Vision.
https://doi.org/10.1109/ICCV.2013.350

Lepetit, V., Moreno-Noguer, F., & Fua, P. (2009). EPnP: An
accurate O(n) solution to the PnP problemLepetit, V.,

Moreno-Noguer, F., & Fua, P. (2009). EPnP: An accurate
O(n) solution to the PnP problem. International Journal of
Computer Vision. https://doi.org/10.1007/s11263-008-0152-
6. International Journal of Computer Vision.
https://doi.org/10.1007/s11263-008-0152-6

Li, S., Xu, C., & Xie, M. (2012). A robust O(n) solution to
the perspective-n-point problem. IEEE Transactions on
Pattern Analysis and Machine Intelligence.
https://doi.org/10.1109/TPAMI.2012.41

Lu, C. P., Hager, G. D., & Mjolsness, E. (2000). Fast and
globally convergent pose estimation from video images.
IEEE Transactions on Pattern Analysis and Machine
Intelligence. https://doi.org/10.1109/34.862199

McGlone, C. M. (2004). Manual of photogrametry. In
American society for photogrammetry and remote sensing.

Moreno-Noguer, F., Lepetit, V., & Fua, P. (2008). Pose
priors for simultaneously solving alignment and
correspondence. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics).
https://doi.org/10.1007/978-3-540-88688-4-30

Taylor, G., & Kleeman, L. (2001). Flexible self-calibrated
visual servoing for a humanoid robot. Proceedings of the
Australian Conference on Robotics and Automation.

Yahyanejad, S., & Rinner, B. (2015). A fast and mobile
system for registration of low-altitude visual and thermal
aerial images using multiple small-scale UAVs. ISPRS
Journal of Photogrammetry and Remote Sensing.
https://doi.org/10.1016/j.isprsjprs.2014.07.015

Zhu, Q., Wu, B., & Xu, Z. X. (2006). Seed point selection
method for triangle constrained image matching
propagation. IEEE Geoscience and Remote Sensing Letters.
https://doi.org/10.1109/LGRS.2005.861735

Grunert, J. A. (1841). Das pothenotische problem in
erweiterter gestalt nebst bber seine anwendungen in der
geodasie. Grunerts Archiv fur Mathematik und Physik, 238-
248.



