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Crown fires can occur in any forest type throughout the world. The occurrence of crown fires has become increasingly frequent and 

severe in recent years.  The overall aim of this study is to estimate the forest canopy fuel parameters including crown base height 

(CBH), canopy volume (CV), canopy cover (CC), and crown bulk density (CBD), and to investigate the potential of using lidar data 

in east Texas. The specific objectives are to: (1) develop a methodology for using airborne light detection and ranging (lidar) to 

estimate canopy fuel parameters and to simulate fire behavior using estimated forest canopy parameters as FARSITE inputs, and (2) 

investigate the use of spaceborne ICEsat /GLAS (Ice, Cloud, and Land Elevation Satellite/Geoscience Laser Altimeter System) lidar 

for estimating canopy fuel parameters. According to the results from our study, the CBD, CC, and CBH were successfully predicted 

using airborne lidar data with R² values of 0.748, 0.89, and 0.976, respectively.  The study demonstrated that canopy fuel parameters 

can be successfully estimated using GLAS waveform data; an R² value of 0.84 was obtained. With these approaches, we are 

providing practical methods for quantifying these parameters and making them directly available to fire managers. The accuracy of 

these parameters is very important for realistic predictions of wildfire initiation and growth.  

 

1. INTRODUCTION 

The occurrence of wildland fires is an essential part of the 

natural cycle of the ecosystem (Johnson, 1992). Canopy fuel 

distribution is a critical factor for predicting fire behavior. 

The accurate prediction of the potential risk of a wildland fire 

can help reduce the seriousness of wildland fires. 

Applications of various remote sensing systems and 

techniques to forest fire related research have been rapidly 

increasing in recent years. These techniques and 

systems can be used to decrease fire risk and reduce 

fire damage (Mutlu et al., 2008a; Andersen et al., 2005; 

Arroyo et al., 2008; Mutlu et al., 2008b). Airborne lidar 

remote sensing is an advanced technology for forestry 

applications and it has been applied to estimate surface 

fuel models and canopy fuel parameters (Mutlu et al., 

2008a; Arroyo et al., 2008; Dubayah & Drake, 2000; 

Riano et al., 2003; Andersen et al., 2005; Hall et al., 

2005; Morsdorf et al., 2004; Popescu & Zhao, 2008). 

The Geoscience Laser Altimeter System (GLAS) on the 

Ice, Cloud and land Elevation satellite (ICESat) is the first 

spaceborne lidar tool. This system was designed to measure 

and monitor ice sheet mass balance, cloud and aerosol 

heights, surface elevation changes, and vegetation 

characteristics (Zwally et al., 2002; Sun et al., 2008; Nelson 

et al., 2009; Simard et al., 2008). In recent years, 

ICESat/GLAS has been used in a number of forestry studies 

and  has proven to have strong correlation with field-based 

aboveground biomass and canopy height measurements in 

extensive forests (Boudreau et al., 2008; Sun et al., 2008). 

In this study, we aim is to estimate the forest canopy fuel 

parameters including crown base height (CBH), canopy 

volume (CV), canopy cover (CC), and crown bulk density 

(CBD), and to investigate the potential of using airborne and 

spaceborne lidar data in east Texas. 

2. STUDY AREA 

The study area is located in Huntsville, texas, USA. 

Vegetation comprises upland, bottomland hardwoods, 

coniferous, old growth pine stands, mixed stands, brushes, 

upland and bottomland hardwoods, and open ground with 

fuels consisting of grasses. Also, it is flat with average 

elevation is about 90 m. Figure 1 represents the multispectral 

QuickBird image of the study area.   

 

Figure 1. The location of our study area 
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3. MATERIALS AND METHODS 

 

3.1 Data 

Four types of data were used in this study: field data, a 

multispectral Quickbird image, airborne and spaceborne 

IceSat/GLAS  lidar data.  

3.1.1 Field Data  

Field data were collected between May 2004 and July 2004. 

Ground reconnaissance was used to identify the potential plot 

locations in Huntsville, Texas. .  Circular plots of two 

different sizes, a radius of 11.35 m (37.24 ft) covering a 

404.7 m² (1/10th acre) and a smaller plot size of 40.468 m² 

(1/100-acre) with a radius of 3.59 m (11.78ft), were used in 

this study. Inside of each plot boundary, the following 

parameters were measured for each tree: diameter at breast 

height (dbh), total tree height, crown base height, and crown 

class.  

 

3.1.2 Multispectral and Lidar Data 

 

The multispectral Quickbird image used in this study (Fig. 

4.1a) is a high resolution (2.5 x 2.5 m) satellite image in 

2004. Airborne lidar scanning data over an area of 6,474.9 

hectare (25 square miles) was obtained in leaf-off condition 

during March 2004.  The lidar system (Leica-Geosystems 

ALS40) recorded two returns per laser pulse, first and last.  

The horizontal accuracy is 20-30 cm and vertical accuracy 

for the mission is 15 cm. The average point density is 2.58 

laser points/m² and the maximum point density is 39.84 laser 

points/m².  The average distance between laser points is 0.62 

m for the entire point cloud. We were able to obtain GLAS 

data for our study area from February 2004 to October 2007 

with GLAS sub-cycles from L2A to L3I from 

http://www.nsidc.org/data/icesat/order.html. Among all of 

the available GLAS data, we used the February 2004 GLAS 

data set obtained from GLAS L2B sub-cycle. 

 

3.2 Processing Lidar Data 

 

The height bins approach was used to generate lidar 

multiband data from airborne scanning lidar data (Popescu 

and Zhao, 2008).  The height bins approach makes use of the 

entire lidar point cloud.   Lidar bins were created by counting 

the occurrence of the number of lidar points within each 

volume unit and normalizing by the total number of points.    

First, pixel size was set to 30 m resolution, which is larger 

than the actual plot size, to derive all lidar metrics to 

compensate for any GPS errors when locating ground plots.  

Similar to studies of Naesset and Bjerknes (2001), Erdody 

and Moskal (2010), and Andersen et al. (2005), eight lidar 

metrics were derived from the lidar point cloud including: 

25th, 50th (median), 75th, and 90th of height percentiles of 

laser pulses, maximum height, mean height, coefficient of 

variation (cv), and canopy density (D), calculated as the 

number of all returns above 2.5 m divided by the total 

number of all returns at 30 m.  In addition, logarithmic 

transformation was applied to our metrics. To estimate 

canopy fuel parameters from airborne lidar data, multiple 

predictive models were developed in this study.   

Because no coincident field measurements are directly 

available over the footprints of GLAS shots, a two-phase 

approach were used in developing the regression models. 

First, a spatially-explicit map of CBH was derived from 

airborne lidar data. Then, the GLAS metrics were related to 

this lidar-derived canopy characteristic with multiple linear 

regression models.  The canopy fuels were obtained from 

both the field data and the airborne lidar data. Figure 2 

represents an example of waveform data collected by 

ICESat/GLAS. 

 

Figure 2. The GLAS example waveform over forest land. 

Initially, a total of 48 GLAS waveforms were found and 

overlaid over the study area; however, only the 33 of the 

GLAS waveforms were used because no information was 

obtained from the rest of the footprints. A standalone peak 

finding algorithm developed by Neuenschwander et al. 

(2008) was used to process the GLAS waveform data.  The 

GLA14 provides the latitude and longitude information. With 

the information obtained from GLA14, the last 392 records 

of each GLAS waveform (GLA01) were geolocated. After 

obtaining total waveform energy, the position of 0% (RH0), 

25% (RH25), 50% (RH50-HOME (height of median 

energy)), 75% (RH75), 90% (RH90), and 100% (RH100) 

percentile heights were computed starting from the signal 

ending by computing a cumulative distribution function of 

GLAS waveform energy. A total of ten GLAS metrics were 

derived and used in our regression analysis to estimate 

canopy fuels. Figure 3 the overall view of the ICESat/GLAS 

footprints over lidar-derived CBH map of the study area.  

 

 
 

Figure 3. The ICESat/GLAS footprints overlaid on the 

airborne lidar-derived wall-to-wall CBH map of our study 

area. 
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4. RESULTS 

 

As a result, CBD used as field data always provided better 

models in metrics set.  To illustrate the goodness-of-fit of the 

data and select the best fitted model for predicting CBD, all 

regression models were plotted. For CBH, among all the 

models, the best-fitted equation was obtained from metrics-

set-1 with R² value of 0.976 and adjusted R² value of 0.973. 

For CBD, the best fitted equation was obtained from metrics-

set-3 with R² value of 0.748 and adjusted R² value of 0.726.  

The highest R² and adjusted R² values were used to identify 

the best fitted model for CBD and CBH, not the lowest log-

transformed RMSE. The CBD (Figure 4.a) and CBH (Figure 

4.b) maps were generated in ENVI using Band Math function 

based on the selected regression models. According to the 

results from our study, the CBD, CC, and CBH were 

successfully predicted using airborne lidar data with R² 

values of 0.748, 0.89, and 0.976, respectively.  According to 

regression analysis result, GLAS height metrics and lidar-

derived CBH were highly correlated in this study.   

 

                 

(a)                                      (b) 

Figure 4.   (a) The CBD map; (b) The CBH map of our study 

area. 

Canopy cover estimated from GLAS data without any CBH 

threshold yielded a log trend when compared to the airborne 

LiDAR. Canopy cover estimated as the ratio of canopy 

energy to the total energy of the waveform without applying 

any CBH threshold, showed a log trend with 57.6% of the 

variance explained. Strong agreement was found between 

GLAS CC estimates and airborne LiDAR CC estimates when 

the latter was derived from intensity data. The use of intensity 

data to generate CC from airborne LiDAR showed a good  

agreement (around 7%) with GLAS data. When the range 

capability of airborne LiDAR data is used, only the 

presence/absence of a reflection surface is accounted for but 

not the amount of energy returned to the sensor. 

 
Figure 5. Canopy Cover map derived from lidar data 

 

Using airborne lidar data, we were able to derive the two 

required CBH, CC, and CBD canopy fuel parameters to 

simulate crown fires in FARSITE.  Surface fuel model, CBD, 

CC, and CBH maps are very difficult to derive and many fire 

managers do not have these inputs to run FARSITE.  We 

developed all the spatial data layers for our study area.  To 

simulate crown fire over the study area, a plot was selected 

and plot center location was used as an ignition point in 

FARSITE simulations.   Inside of this plot boundary, we 

have a total of 57 trees with an average total tree height of 

52.1 m.  The duration of this simulation was set to 48 hours 

beginning at 8:00 AM and ending at 8:00 AM two days later.  

Weather and wind data, gathered on March 1, 2004, were 

used for all runs of FARSITE because dryer periods occur 

during September – October and February – March in the 

study area.  Figure 6 represents the snapshot of FARSITE 

run.  The result of FARSITE simulation shows that the 

estimated burned area was 463 ha (1144.57 ac) and the 

perimeter was 12.6 km (7.8 miles) for the selected plot 

(Liv#21).  These results are important because a significant 

risk to life and property exists wherever forest stands are 

prone to crown fire. 

 

Figure 6. A snapshot from crown fire simulation software, 

FARSITE. 
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